3.363 \(\int \frac {(f+g x^{-n}) \log (c (d+e x^n)^p)}{x} \, dx\)

Optimal. Leaf size=97 \[ \frac {f \log \left (-\frac {e x^n}{d}\right ) \log \left (c \left (d+e x^n\right )^p\right )}{n}-\frac {g x^{-n} \log \left (c \left (d+e x^n\right )^p\right )}{n}+\frac {f p \text {Li}_2\left (\frac {e x^n}{d}+1\right )}{n}-\frac {e g p \log \left (d+e x^n\right )}{d n}+\frac {e g p \log (x)}{d} \]

[Out]

e*g*p*ln(x)/d-e*g*p*ln(d+e*x^n)/d/n-g*ln(c*(d+e*x^n)^p)/n/(x^n)+f*ln(-e*x^n/d)*ln(c*(d+e*x^n)^p)/n+f*p*polylog
(2,1+e*x^n/d)/n

________________________________________________________________________________________

Rubi [A]  time = 0.14, antiderivative size = 97, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 9, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.360, Rules used = {2475, 14, 2416, 2395, 36, 29, 31, 2394, 2315} \[ \frac {f p \text {PolyLog}\left (2,\frac {e x^n}{d}+1\right )}{n}+\frac {f \log \left (-\frac {e x^n}{d}\right ) \log \left (c \left (d+e x^n\right )^p\right )}{n}-\frac {g x^{-n} \log \left (c \left (d+e x^n\right )^p\right )}{n}-\frac {e g p \log \left (d+e x^n\right )}{d n}+\frac {e g p \log (x)}{d} \]

Antiderivative was successfully verified.

[In]

Int[((f + g/x^n)*Log[c*(d + e*x^n)^p])/x,x]

[Out]

(e*g*p*Log[x])/d - (e*g*p*Log[d + e*x^n])/(d*n) - (g*Log[c*(d + e*x^n)^p])/(n*x^n) + (f*Log[-((e*x^n)/d)]*Log[
c*(d + e*x^n)^p])/n + (f*p*PolyLog[2, 1 + (e*x^n)/d])/n

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 29

Int[(x_)^(-1), x_Symbol] :> Simp[Log[x], x]

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 36

Int[1/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :> Dist[b/(b*c - a*d), Int[1/(a + b*x), x], x] -
Dist[d/(b*c - a*d), Int[1/(c + d*x), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0]

Rule 2315

Int[Log[(c_.)*(x_)]/((d_) + (e_.)*(x_)), x_Symbol] :> -Simp[PolyLog[2, 1 - c*x]/e, x] /; FreeQ[{c, d, e}, x] &
& EqQ[e + c*d, 0]

Rule 2394

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))/((f_.) + (g_.)*(x_)), x_Symbol] :> Simp[(Log[(e*(f +
g*x))/(e*f - d*g)]*(a + b*Log[c*(d + e*x)^n]))/g, x] - Dist[(b*e*n)/g, Int[Log[(e*(f + g*x))/(e*f - d*g)]/(d +
 e*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && NeQ[e*f - d*g, 0]

Rule 2395

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))*((f_.) + (g_.)*(x_))^(q_.), x_Symbol] :> Simp[((f + g
*x)^(q + 1)*(a + b*Log[c*(d + e*x)^n]))/(g*(q + 1)), x] - Dist[(b*e*n)/(g*(q + 1)), Int[(f + g*x)^(q + 1)/(d +
 e*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, n, q}, x] && NeQ[e*f - d*g, 0] && NeQ[q, -1]

Rule 2416

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*((h_.)*(x_))^(m_.)*((f_) + (g_.)*(x_)^(r_.))^(q
_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*Log[c*(d + e*x)^n])^p, (h*x)^m*(f + g*x^r)^q, x], x] /; FreeQ[{a,
 b, c, d, e, f, g, h, m, n, p, q, r}, x] && IntegerQ[m] && IntegerQ[q]

Rule 2475

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))^(q_.)*(x_)^(m_.)*((f_) + (g_.)*(x_)^(s_))^(r_.),
 x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(f + g*x^(s/n))^r*(a + b*Log[c*(d + e*x)^p])^q,
x], x, x^n], x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p, q, r, s}, x] && IntegerQ[r] && IntegerQ[s/n] && Intege
rQ[Simplify[(m + 1)/n]] && (GtQ[(m + 1)/n, 0] || IGtQ[q, 0])

Rubi steps

\begin {align*} \int \frac {\left (f+g x^{-n}\right ) \log \left (c \left (d+e x^n\right )^p\right )}{x} \, dx &=\frac {\operatorname {Subst}\left (\int \frac {\left (f+\frac {g}{x}\right ) \log \left (c (d+e x)^p\right )}{x} \, dx,x,x^n\right )}{n}\\ &=\frac {\operatorname {Subst}\left (\int \left (\frac {g \log \left (c (d+e x)^p\right )}{x^2}+\frac {f \log \left (c (d+e x)^p\right )}{x}\right ) \, dx,x,x^n\right )}{n}\\ &=\frac {f \operatorname {Subst}\left (\int \frac {\log \left (c (d+e x)^p\right )}{x} \, dx,x,x^n\right )}{n}+\frac {g \operatorname {Subst}\left (\int \frac {\log \left (c (d+e x)^p\right )}{x^2} \, dx,x,x^n\right )}{n}\\ &=-\frac {g x^{-n} \log \left (c \left (d+e x^n\right )^p\right )}{n}+\frac {f \log \left (-\frac {e x^n}{d}\right ) \log \left (c \left (d+e x^n\right )^p\right )}{n}-\frac {(e f p) \operatorname {Subst}\left (\int \frac {\log \left (-\frac {e x}{d}\right )}{d+e x} \, dx,x,x^n\right )}{n}+\frac {(e g p) \operatorname {Subst}\left (\int \frac {1}{x (d+e x)} \, dx,x,x^n\right )}{n}\\ &=-\frac {g x^{-n} \log \left (c \left (d+e x^n\right )^p\right )}{n}+\frac {f \log \left (-\frac {e x^n}{d}\right ) \log \left (c \left (d+e x^n\right )^p\right )}{n}+\frac {f p \text {Li}_2\left (1+\frac {e x^n}{d}\right )}{n}+\frac {(e g p) \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,x^n\right )}{d n}-\frac {\left (e^2 g p\right ) \operatorname {Subst}\left (\int \frac {1}{d+e x} \, dx,x,x^n\right )}{d n}\\ &=\frac {e g p \log (x)}{d}-\frac {e g p \log \left (d+e x^n\right )}{d n}-\frac {g x^{-n} \log \left (c \left (d+e x^n\right )^p\right )}{n}+\frac {f \log \left (-\frac {e x^n}{d}\right ) \log \left (c \left (d+e x^n\right )^p\right )}{n}+\frac {f p \text {Li}_2\left (1+\frac {e x^n}{d}\right )}{n}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.10, size = 87, normalized size = 0.90 \[ \frac {f \left (\log \left (-\frac {e x^n}{d}\right ) \log \left (c \left (d+e x^n\right )^p\right )+p \text {Li}_2\left (\frac {e x^n}{d}+1\right )\right )-g x^{-n} \log \left (c \left (d+e x^n\right )^p\right )+\frac {e g p \left (n \log (x)-\log \left (d+e x^n\right )\right )}{d}}{n} \]

Antiderivative was successfully verified.

[In]

Integrate[((f + g/x^n)*Log[c*(d + e*x^n)^p])/x,x]

[Out]

((e*g*p*(n*Log[x] - Log[d + e*x^n]))/d - (g*Log[c*(d + e*x^n)^p])/x^n + f*(Log[-((e*x^n)/d)]*Log[c*(d + e*x^n)
^p] + p*PolyLog[2, 1 + (e*x^n)/d]))/n

________________________________________________________________________________________

fricas [A]  time = 0.46, size = 114, normalized size = 1.18 \[ -\frac {d f n p x^{n} \log \relax (x) \log \left (\frac {e x^{n} + d}{d}\right ) + d f p x^{n} {\rm Li}_2\left (-\frac {e x^{n} + d}{d} + 1\right ) + d g \log \relax (c) - {\left (e g n p + d f n \log \relax (c)\right )} x^{n} \log \relax (x) + {\left (d g p - {\left (d f n p \log \relax (x) - e g p\right )} x^{n}\right )} \log \left (e x^{n} + d\right )}{d n x^{n}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f+g/(x^n))*log(c*(d+e*x^n)^p)/x,x, algorithm="fricas")

[Out]

-(d*f*n*p*x^n*log(x)*log((e*x^n + d)/d) + d*f*p*x^n*dilog(-(e*x^n + d)/d + 1) + d*g*log(c) - (e*g*n*p + d*f*n*
log(c))*x^n*log(x) + (d*g*p - (d*f*n*p*log(x) - e*g*p)*x^n)*log(e*x^n + d))/(d*n*x^n)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (f + \frac {g}{x^{n}}\right )} \log \left ({\left (e x^{n} + d\right )}^{p} c\right )}{x}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f+g/(x^n))*log(c*(d+e*x^n)^p)/x,x, algorithm="giac")

[Out]

integrate((f + g/x^n)*log((e*x^n + d)^p*c)/x, x)

________________________________________________________________________________________

maple [C]  time = 3.41, size = 423, normalized size = 4.36 \[ -\frac {i \pi f \,\mathrm {csgn}\left (i c \right ) \mathrm {csgn}\left (i \left (e \,x^{n}+d \right )^{p}\right ) \mathrm {csgn}\left (i c \left (e \,x^{n}+d \right )^{p}\right ) \ln \left (x^{n}\right )}{2 n}+\frac {i \pi f \,\mathrm {csgn}\left (i c \right ) \mathrm {csgn}\left (i c \left (e \,x^{n}+d \right )^{p}\right )^{2} \ln \left (x^{n}\right )}{2 n}+\frac {i \pi f \,\mathrm {csgn}\left (i \left (e \,x^{n}+d \right )^{p}\right ) \mathrm {csgn}\left (i c \left (e \,x^{n}+d \right )^{p}\right )^{2} \ln \left (x^{n}\right )}{2 n}-\frac {i \pi f \mathrm {csgn}\left (i c \left (e \,x^{n}+d \right )^{p}\right )^{3} \ln \left (x^{n}\right )}{2 n}-f p \ln \relax (x ) \ln \left (\frac {e \,x^{n}+d}{d}\right )+\frac {i \pi g \,x^{-n} \mathrm {csgn}\left (i c \right ) \mathrm {csgn}\left (i \left (e \,x^{n}+d \right )^{p}\right ) \mathrm {csgn}\left (i c \left (e \,x^{n}+d \right )^{p}\right )}{2 n}-\frac {i \pi g \,x^{-n} \mathrm {csgn}\left (i c \right ) \mathrm {csgn}\left (i c \left (e \,x^{n}+d \right )^{p}\right )^{2}}{2 n}-\frac {i \pi g \,x^{-n} \mathrm {csgn}\left (i \left (e \,x^{n}+d \right )^{p}\right ) \mathrm {csgn}\left (i c \left (e \,x^{n}+d \right )^{p}\right )^{2}}{2 n}+\frac {i \pi g \,x^{-n} \mathrm {csgn}\left (i c \left (e \,x^{n}+d \right )^{p}\right )^{3}}{2 n}+\frac {e g p \ln \left (x^{n}\right )}{d n}-\frac {e g p \ln \left (e \,x^{n}+d \right )}{d n}-\frac {f p \dilog \left (\frac {e \,x^{n}+d}{d}\right )}{n}+\frac {f \ln \relax (c ) \ln \left (x^{n}\right )}{n}-\frac {g \,x^{-n} \ln \relax (c )}{n}+\frac {\left (f n \,x^{n} \ln \relax (x )-g \right ) x^{-n} \ln \left (\left (e \,x^{n}+d \right )^{p}\right )}{n} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((f+g/(x^n))*ln(c*(e*x^n+d)^p)/x,x)

[Out]

(f*ln(x)*n*x^n-g)/n/(x^n)*ln((e*x^n+d)^p)+1/2*I/n*Pi*csgn(I*(e*x^n+d)^p)*csgn(I*c*(e*x^n+d)^p)^2*ln(x^n)*f-1/2
*I/n*Pi*csgn(I*(e*x^n+d)^p)*csgn(I*c*(e*x^n+d)^p)^2*g/(x^n)-1/2*I/n*Pi*csgn(I*(e*x^n+d)^p)*csgn(I*c*(e*x^n+d)^
p)*csgn(I*c)*ln(x^n)*f+1/2*I/n*Pi*csgn(I*(e*x^n+d)^p)*csgn(I*c*(e*x^n+d)^p)*csgn(I*c)*g/(x^n)-1/2*I/n*Pi*csgn(
I*c*(e*x^n+d)^p)^3*ln(x^n)*f+1/2*I/n*Pi*csgn(I*c*(e*x^n+d)^p)^3*g/(x^n)+1/2*I/n*Pi*csgn(I*c*(e*x^n+d)^p)^2*csg
n(I*c)*ln(x^n)*f-1/2*I/n*Pi*csgn(I*c*(e*x^n+d)^p)^2*csgn(I*c)*g/(x^n)+1/n*ln(c)*ln(x^n)*f-1/n*ln(c)*g/(x^n)-p/
n*f*dilog((e*x^n+d)/d)-f*p*ln(x)*ln((e*x^n+d)/d)+p*e/n*g/d*ln(x^n)-e*g*p*ln(e*x^n+d)/d/n

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ -\frac {{\left (f n^{2} p \log \relax (x)^{2} - 2 \, f n \log \relax (c) \log \relax (x)\right )} x^{n} - 2 \, {\left (f n x^{n} \log \relax (x) - g\right )} \log \left ({\left (e x^{n} + d\right )}^{p}\right ) + 2 \, g \log \relax (c)}{2 \, n x^{n}} + \int \frac {d f n p \log \relax (x) + e g p}{e x x^{n} + d x}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f+g/(x^n))*log(c*(d+e*x^n)^p)/x,x, algorithm="maxima")

[Out]

-1/2*((f*n^2*p*log(x)^2 - 2*f*n*log(c)*log(x))*x^n - 2*(f*n*x^n*log(x) - g)*log((e*x^n + d)^p) + 2*g*log(c))/(
n*x^n) + integrate((d*f*n*p*log(x) + e*g*p)/(e*x*x^n + d*x), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\ln \left (c\,{\left (d+e\,x^n\right )}^p\right )\,\left (f+\frac {g}{x^n}\right )}{x} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((log(c*(d + e*x^n)^p)*(f + g/x^n))/x,x)

[Out]

int((log(c*(d + e*x^n)^p)*(f + g/x^n))/x, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{- n} \left (f x^{n} + g\right ) \log {\left (c \left (d + e x^{n}\right )^{p} \right )}}{x}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f+g/(x**n))*ln(c*(d+e*x**n)**p)/x,x)

[Out]

Integral(x**(-n)*(f*x**n + g)*log(c*(d + e*x**n)**p)/x, x)

________________________________________________________________________________________